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A B S T R A C T

Dynamic performances of recessed-gate GaN metal oxide semiconductor high electron mobility transistors 
(MOSHEMTs) enabled by argon-based neutral beam etching (Ar-NBE) are comprehensively investigated. Upon 
positive gate stressing, a minimal shift of + 0.27 V in the threshold voltage (Vth) is observed, due to capture of 
electrons by interface traps at the Al2O3/AlGaN interface. Dynamic ON-resistance (Ron) and drain current 
degradation are also studied by applying various drain voltage values and durations. Moreover, interface 
characterizations by conductance method and deep-level transient spectroscopy (DLTS) both confirm the su-
perior interface quality achieved by NBE processing, with a low interface trap density (Dit) of 1.19 × 1012 cm-2 

eV-1. The results underscore NBE recessing as an attractive approach for manufacturing highly-reliable normally- 
off GaN MOSHEMTs for next-generation high-frequency power conversion systems.

1. Introduction

Gallium Nitride (GaN) based high electron mobility transistors 
(HEMTs) are regarded as promising candidates for high-frequency, high- 
power applications, attributable to wide bandgap, high electron 
mobility, high critical breakdown electric field (Kozak et al., 2023; 
Meneghini et al., 2021; Repaka et al., 2024, 2025). In power conversion 
applications, normally-off devices are highly desirable for fail-safe op-
erations. To achieve this goal, p-GaN gate (Jin et al., 2023; Yang et al., 
2024) and recessed-gate have been employed to realize 
enhancement-mode (E-mode) devices. Compared with p-GaN gate 
HEMT, recessed-gate metal oxide semiconductor (MOS) HEMTs have 
gained considerable research interest due to large gate swing and low 
leakage current (He et al., 2018; Hu et al., 2019; Shi et al., 2016) and 
impose fewer requirements on starting epi‑structure (Hua et al., 2016). 
Moreover, recessed-gate MOSHEMTs exhibit their multifaceted poten-
tial in applications including gas sensor (Raman et al., 2022), power 
switching (Danielraj et al., 2022), and photodetection (Liu et al., 2024). 
Cl-based inductively coupled plasma-reactive ion etching (ICP-RIE) has 
been extensively utilized for the fabrication of recessed-gate structures 
(Anderson et al., 2016; Liu et al., 2017), however, it may induce 

plasma-induced damage and dynamic instability (Lin et al., 2017).
Ion beam etching (IBE) or its modified version, argon-based neutral 

beam etching (Ar-NBE), which features precise material removal via a 
focused neutral beam of inert gas particles, exhibits substantial promise 
in providing intricate control over device structures, and alleviating 
plasma-associated damage (Adesida et al., 1994; Chulukhadze et al., 
2023; James et al., 2019; Kuritzky et al., 2016; Ping et al., 1995; Pinto 
et al., 2022; Pinto Rocha et al., 2023; Smirnov et al., 2016). In recent 
research, Yu et al. fabricated the recessed-gate MOSHEMT using ICP-RIE 
and NBE, respectively. The results showed that devices fabricated using 
the NBE process exhibited an increased current on/off ratio from 107 to 
109 and improved subthreshold swing (S.S.) from 148 mV/dec to 99.6 
mV/dec (Yu et al., 2024). Hemmi et al. used pulsed I-V testing to illus-
trate the influence of NBE process on current collapse of recessed-gate 
AlGaN/GaN HEMTs. The suppressed current collapse confirmed that 
NBE has a clear advantage over the conventional ICP etching via miti-
gating plasma-induced damages (Hemmi et al., 2017). In our previous 
work, Ar-based NBE was employed in the fabrication of recessed-gate 
MOSHEMTs, achieving a high threshold voltage (4.22 V), a large cur-
rent on/off ratio above 109, and a low on-state IG (< 0.6 nA/mm) (Gao 
et al., 2024) .
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Despite the fact that the DC and RF performances of recessed-gate 
GaN MOSHEMTs by NBE have been reported in our group (Gao et al., 
2024; Ye et al., 2025), detailed dynamic characteristics, including 
time-dependent threshold voltage shift and drain current degradation, 
have not been thoroughly investigated. Moreover, The interface quality 
exerts a critical influence on the degradation of MOSHEMT dynamic 
performance (Lu et al., 2017; Meneghesso et al., 2016; Yao et al., 2022, 
2024), thereby necessitating precise interface trap density (Dit) quanti-
fication as an essential parameter for evaluating interface state.

In this study, normally-off GaN MOSHEMT devices have been suc-
cessfully fabricated based on an NBE-enabled gate recess step. Addi-
tionally, dynamic performance of the recessed-gate MOSHEMTs is 
thoroughly investigated with different stress conditions. Initially, the 
time-dependent threshold voltage instabilities upon negative and posi-
tive gate stress conditions are investigated. Subsequently, current 
collapse ratio and dynamic on-resistance (Ron) deterioration with off- 
state drain stress are analyzed using pulse I-V measurements. 

Moreover, time-dependent device dynamic characteristics, including 
normalized saturation current/dynamic Ron degradation and threshold 
voltages (Vth) shift are investigated. Finally, the Dit of the post-etch 
Al2O3/AlGaN interface is characterized using the conductance method 
and the deep-level transient spectroscopy (DLTS) method, respectively. 
The good dynamic stability and low Dit of the device indicate slight 
damage after NBE, showing a promising approach to realize high per-
formance recessed-gate GaN MOSHEMTs.

2. Fabrication and measurement

Fig. 1(a) showed the schematic cross section of the recessed-gate 
GaN MOSHEMT structure employed in this study. The device was 
grown on a 6-inch Si (111) substrate by metal-organic chemical vapor 
deposition (MOCVD). The epitaxial layer stack comprised AlN/GaN- 
based buffer layers, a 200 nm undoped GaN channel layer, a 1 nm 
AlN spacer layer, a 15 nm undoped Al0.25Ga0.75 N barrier layer, and a 2 
nm GaN cap layer. As shown in Fig. 1(b), device fabrication process 
commenced with mesa isolation achieved through Cl-based ICP-RIE. 
After mesa isolation, Ar-based NBE gate recessing was performed by a 
200 eV argon beam, with an etching rate of 3 nm/min for the AlGaN 
layer. The recessed depth of 12 nm was obtained after 210 s etching 
process and tetramethylammonium hydroxide (TMAH) treatment, 
which reduced surface roughness and mitigated etching damage. Ohmic 
contacts were formed by sequential deposition of 20/150/50/80 nm Ti/ 
Al/Ni/Au layers, followed by annealing at 850 ◦C in N2 for 40 s. Sub-
sequently, a 15 nm-thick Al2O3 dielectric layer was deposited immedi-
ately through plasma-enhanced atomic layer deposition (PEALD) at 300 
◦C, additionally functioning as a passivation layer for the access regions. 
Finally, 20/200 nm Ni/Au was deposited to form gate metal and contact 
pads. The gate length (Lg), gate-source distance (Lgs), gate-drain distance 
(Lgd), and gate width (Wg) of the devices were 1.5/3/3/20 μm, respec-
tively. Both electrical static & dynamic properties of the devices, 
including transfer characteristics, output characteristics, threshold 

Fig. 1. (a) Schematic structures and (b) fabrication scheme of the recessed-gate 
GaN MOSHEMT.

Fig. 2. (a) Linear scale and (b) Log scale Transfer characteristics. (c) Output characteristics, and (d) Off-state breakdown characteristic measured at Vgs = − 10 V for 
the recessed-gate GaN MOSHEMT.
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voltage instability, pulsed I-V characteristics, and time-resolved drain 
current (Id) & Ron were explicitly characterized.

3. Result and discussion

3.1. Static DC characteristics

Fig. 2(a) illustrated the linear scale transfer characteristics of 
recessed-gate GaN MOSHEMT at room temperature. The Vth of device 
was extracted to be 1.82 V at Vds = 2 V, defined at Id of 1 mA/mm from 
the transfer curves. As shown in Fig. 2(b), the on/off drain current ratio 
could be extracted as 4.8 × 109 from log scale transfer characteristics. 
The output characteristics of device were presented in Fig. 2(c), the 
device exhibited an Ron of 4.54 Ω•mm and a high saturation Id density of 
737 mA/mm at Vgs = 8 V. Fig. 2(d) showed the off-state breakdown 
characteristic of device showing off-state breakdown voltage of 305 V.

3.2. Dynamic performance

Positive and negative bias-induced threshold instability (PBTI and 
NBTI) were investigated utilizing the measure-stress-measure (M-S-M) 
technique (Meneghini et al., 2016), which involves periodically 

interrupting the stressing phases to perform rapid ID-VG measurements. 
Fig. 3(a) showed the schematic describing the M-S-M process, rapid 
measurement duration of 10 ms ensures that the trap behavior upon the 
stressing stage is not affected. During each fast measurement period, Vgs 
was swept from − 2 V to 8 V while maintaining Vds to be 1 V. Various 
gate stressing voltages were set during stressing period while drain was 
grounded. The total stressing time was set as 100 s to ensure that the 
effect of traps on device degradation was vastly taken into account. 
Fig. 3(b) illustrated the multiple transfer characteristics measured dur-
ing 100 s positive gate bias stressing period with gate stress voltage (Vgs, 

stress) of 4 V. The Vth showed a slight positive shift during positive gate 
bias stressing period. A small Vth shift of 0.18 V could be obtained when 
Vgs,stress = 4 V and stressing time = 100 s. Moreover, the stress conditions 
were varied to further investigate the Vth shift characteristics. With 
positive stress conditions, the Vgs,stress was changed from 2 V to 5 V, 
while upon negative stress conditions, the Vgs,stress ranged from − 5 V to 
− 15 V. The relationship between the Vth shift and stress time is illus-
trated in Fig. 3(c). When a positive gate stress was applied, the Vth 
exhibited a positive shift. Specifically, with Vgs,stress of 2 V, the Vth 
shifted positively by 0.17 V; when the Vgs,stress increased to 6 V, the Vth 
shift rose to 0.27 V. Conversely, with negative gate stress, the Vth 
showed a negative shift. For Vgs,stress of − 5 V applied for 100 s, the Vth 

Fig. 3. (a) Schematic describing the M-S-M technique and the associated parameters monitored during the stressing period (b) Transfer characteristics measured 
during 100 s positive gate bias stressing period (Vgs,stress -= 4 V). (c) Variation of Vth as a function of stressing time with different gate bias voltage.

Fig. 4. Schematic illustration of trapping mechanisms with (a) positive gate stressing condition and (b) negative gate stressing condition.
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shifted by − 0.3 V. Even with the stress voltage increased to − 15 V, the 
Vth shifted by only − 0.80 V after 100 s of stress. Fig. 4 showed the 
schematic illustration of trapping mechanisms with gate stressing con-
dition. The Vth shift induced by gate stress is associated with the trap-
ping/detrapping at the interface between the dielectric layer and the 
barrier layer in devices (Hori et al., 2013; Lu et al., 2013; Yang et al., 
2017; Zhang et al., 2023; Zhu et al., 2018). When a positive Vgs,stress was 
applied, electrons in the 2DEG channel are trapped in the interface traps, 
reducing the number of free electrons in the channel. The trapped 
electrons also exerted a repulsive force on the remaining free electrons 
in the channel, resulting in a positive shift in Vth, thus requiring a higher 
voltage to turn the device on. On the contrary, with negative Vgs,stress, 
the electrons previously trapped at the interface were released, reducing 
or eliminating their repulsive effect on the channel electrons, which 
leads to a negative shift in Vth, making the device easier to turn on. The 
trapping and detrapping processed at the interface are influenced by the 
magnitude of the stress voltage, with higher voltages accelerating these 
processes.

Fig. 5(a) showed the pulsed output characteristics of device with 
various off-state drain stress voltage (Vds,stress). During stress phase, 
drain was applied with a large Vds,stress while source and gate were 
grounded to common voltage to ensure that device in the off-state. The 
measurement drain voltage changed from 0 V to 10 V, moreover, mea-
surement gate voltage was set to 8 V. Due to the limitation of the in-
strument, the pulse period and pulse width were set to 100 ms and 1 ms, 

respectively. The current collapse ratio become worse as Vds,stress 
increased from 20 V to 60 V. When Vds,stress = 20 V, a small current 
collapse of 5.2 % could be observed. As Vds,stress increased to 60 V, the 
current collapse worsened to 32.3 %. In addition, The results of dynamic 
Ron ratio degradation with different Vds,stress conditions were illustrated 
in Fig. 5(b). The dynamic Ron ratio was defined as (Ron,d/Ron,s), where 
Ron,s was extracted in the fresh state [(Vgs,stress, Vds,stress) = (0 V, 0 V)] 
and Ron,d was extracted in the stressing condition. Ron was measured in 
the linear region of output curve, and the measurement voltage of the 
device was Vgs = 8 V and Vds = 1 V. For this device, the dynamic Ron 
ratio increased from 1.05 to 1.30 as Vds,stress changed from 20 V to 60 V.

Fig. 5. (a) Pulse output characteristics with different off state drain stress 
voltage, gate bias voltage is fixed at 0 V, drain stress voltage (Vds,stress) is 
increased from 20 V to 60 V. (b) Ratio of dynamic Ron/static Ron with different 
off state drain stress voltage.

Fig. 6. Variation of (a) normalized Id, (b) ratio of Ron,d/Ron,s and (c) Vth 
instability as a function of stressing time at different off state drain 
stress voltage.
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Fig. 6 showed the time-dependent instabilities of device with the 
same off-state drain stress condition as pulse I-V test. The normalized 
saturation current trainset in 100 s stress period with different Vds,stress 
was illustrated in Fig 6(a). In measurement period, Id was measured in 
the saturation region of output curves (Vgs,m = 8 V, Vds,m = 10 V). 
Normalized Id was defined as (Id,dynamic/Id,static), where Id,static was 
measured in the fresh state. With the off-state drain stress, the device 
normalized Id decreased gradually. Notably, with Vds,stress of 20 V for a 
duration of 100 s, the normalized Id exhibited a reduction of merely 3 %. 
Upon increasing the Vds,stress to 40 V, a modest alteration in the satu-
ration current, quantified at 12 % was observed. Even with the Vds,stress 
increased to 60 V, the degradation of the normalized Id remains limited, 
showing a reduction of only 27 %. Fig. 6(b) showed dynamic Ron ratio as 
a function of stressing duration, where Ron was extracted in the linear 
region of output curve (Vgs,m = 8 V, Vds,m = 1 V). The dynamic Ron ratio 
progressively deteriorates over time with the off-state Vds,stress. In case of 
Vds,stress = 20 V, the dynamic Ron ratio exhibited minimal change, 

maintaining a value as low as 1.09 after a stressing duration of 100 s. As 
Vds,stress increased to 40 V and 60 V, the dynamic Ron ratio was observed 
to be 1.19 and 1.31, respectively. The degradation of the saturation 
current and dynamic Ron ratio induced by off-state Vds,stress was associ-
ated with traps in the access region. Fig. 7 showed the schematic illus-
tration of trapping mechanisms with off-state drain stressing condition. 
Under the influence of a lateral electric field, electrons were captured by 
these traps. These electrons originated from the release of electrons from 
interface traps and 2DEG. The captured electrons contributed to an in-
crease in the resistance of the conduction channel, leading to a reduction 
in current.

Fig. 6(c) illustrated the Vth shift as a function of stressing time with 
off-state Vds,stress. Upon application of Vds,stress, the Vth demonstrated a 
gradual negative shift. Specifically, the Vth had a − 0.6 V shift after 100 s 
stressing time with Vds,stress of 20 V. As Vds,stress increased to 60 V, the Vth 
shift remains limited to a leftward movement of only 0.65 V. The Vth 
shift induced by off-state Vds,stress was attributed to the interface traps 
located between the dielectric layer and the barrier layer under the gate 
region. As shown in Fig. 7, when off-state Vds,stress was applied, the 
resultant gate-channel vertical electric field facilitated the release of 
captured electrons from the interface traps. The release of these 
captured electrons consequently resulted in a negative shift of the Vth. 
This phenomenon was analogous to the effects observed with negative 
Vgs,stress, as both stress conditions generate gate-channel vertical electric 
field in the same direction. Related research shows that adding a field 
plate could effectively reduce peak of the localized electric field and 
mitigates the trapping of charge, which results in an increased Vth sta-
bility with off-state Vds,stress (Hu et al., 2019; Wu et al., 2021).

3.3. Interface trap analysis

To investigate the distribution of interface states between Al2O3 
dielectric and AlGaN barrier layer after etching, we used the recessed 

Fig. 7. Schematic illustration of trapping mechanisms with off-state drain 
stressing condition.

Fig. 8. (a) Double sweep C–V characteristics of gate recessed Al2O3 MOSCAP at 1 MHz. (b) C–V characteristics of gate recessed Al2O3 MOSCAP from 10 kHz to 1 
MHz. (c) Parallel conductance as a function of radial frequency with different bias voltages (d) Gate recessed interface trap state density with trap energy levels below 
the conduction band edge.
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Al2O3/AlGaN/GaN metal-oxide-semiconductor capacitor (MOSCAP) 
with a more symmetrical structure to evaluate the interface states. 
Double sweep capacitance-voltage hysteresis characteristic at 1 MHz is 
plotted in Fig. 8(a). A hysteresis of 0.45 V is observed for positive gate 
bias. Fig. 8(b) and (c) show the multi-f C-V and G/ω-ω characteristics of 
the Al2O3/AlGaN/GaN MOSCAP with the measurement frequency 
ranging from 10 kHz to 1 MHz. There is one rising slope in the multi-f C- 
V characteristics, where the rising slope is near the VTH of recessed-gate 
MOS-HEMT. Then the conductance method is used to detect the inter-
face states at dielectric/barrier, where the measurement bias voltage is 
set at the rising slope (Yang et al., 2015). Fig. 8(c) demonstrates the G/ω 
as a function of ω, and the peak of G/ω moves to a higher frequency. 
Using the parallel conductance method, interface trap densities are 
extracted, ranging from 1.91 × 1012 to 1.19 × 1012 cm-2 eV-1 with trap 
levels spanning from 0.40 eV to 0.48 eV below the conduction band as 
shown in Fig. 8(d). Table 1 showed the comparison of Dit values 
measured for devices with different recessed-gate etching processes. A 

device using NBE , which realized by neutralization of negative ions, had 
the Dit of 1.23 × 1013 cm-2 eV-1 (Yu et al., 2024). Devices with 
self-terminating wet etching (Huang et al., 2023) and atomic layer 
etching (ALE) (Hu et al., 2019) illustrated the Dit of 1.91 × 1012 cm-2 

eV-1 and 5.9 × 1012 cm-2 eV-1, respectively. Device employing 
selective-area growth (SAG) to achieve normally-off showed the Dit of 
7.51 × 1012 cm-2 eV-1 (He et al., 2021). These results proved that Ar-NBE 
technology mitigates etch damage and achieves good interface quality.

Furthermore, the wide mapping of the continuum interface traps at 
Al2O3/AlGaN was evaluated by deep-level transient spectroscopy 
(DLTS) (Lang, 1974; Deng et al., 2023) in Fig. 9. By varying temperature 
from 200 to 350 K, the Dit was extracted from 0.3 to 0.8 eV. The 
amplitude of Dit is proportional to the DLTS signal, as follows Eq. (1): 

Dit =
εANSCoxb1

kTC3
Mln

(
t2
t1

)
(1) 

where the ε=εsε0, Cox is the capacitance of the oxide layer, CM is the 
capacitance at measured voltage Vm, k is the Boltzmann constant, T is 
temperature, t2 and t1 are the chosen measurement and sampling times. 
It can be observed that more interface states are detected with larger 
energy level. As shown in Fig. 9(a), when UP increases from 0.1 V to 1 V, 
the value of Dit at 0.5 eV increases from 1.51 × 1012 cm-2eV-1 to 1.95 ×
1012 cm-2eV-1. The higher Dit with higher UP indicates more injection of 
carriers induced by the larger forward bias. As shown in Fig. 9(b), when 
tP increases from 0.1 s to 0.5 s, the value of Dit at 0.5 eV increases from 
1.95 × 1012 cm-2eV-1 to 3.80 × 1012 cm-2eV-1. The higher Dit with longer 
tP indicates more injection of carriers induced by the longer injection 
time. When tP is 0.1 s, 0.3 s and 0.5 s, the value of Dit at 0.32 eV is 2.19 ×
1012 cm-2eV-1, 3.47 × 1012 cm-2eV-1 and 3.55 × 1012 cm-2eV-1, and the 
value of Dit at 0.79 eV is 1.38 × 1013 cm-2eV-1, 1.91 × 1013 cm-2eV-1 and 
2.29 × 1013 cm-2eV-1, respectively. It can be found that the value of Dit 
rises rapidly below 0.3 s and climbs slowly after 0.3 s at 0.32 eV, while it 
increases uniformly at 0.79 eV. The different phenomenon demonstrates 
that 0.3 s is long enough to fill most of the interface states with lower 
energy level and more injection time is necessary to fill most of the 
interface states with higher energy level. Compared to the conductance 
method, interface traps with longer time constants and deeper levels can 
be extracted by DLTS. The relatively low level of interface trap density 
indicated that ion beam etching results in superior interface quality, 
which corresponds to the stability of the devices.

4. Conclusion

This study demonstrates solid dynamic reliability of recessed-gate 
GaN MOSHEMTs fabricated via Ar-NBE. When a positive Vgs,stress of 6 
V was applied, the threshold voltage exhibited a slight positive shift of 
0.27 V over a 100 s stressing period. In addition, a − 0.80 V negative shift 
of Vth was observed with a negative Vgs,stress of − 15 V. The gate bias 
induced Vth shifts were related to the interface trap locating in Al2O3/ 
AlGaN interface. Meanwhile, during 100 s stressing period with off-state 
Vds,stress of 60 V, saturation current decreased by 27 % and dynamic Ron 
ratio was degraded to 1.31, both resulting from electron trapping at the 
access region. Moreover, the interface trap state density of post-etch 
Al2O3/AlGaN interface was investigated utilizing conductance method 
and DLTS analyses. The results indicate that the interface state density is 
comparatively low, at the order of 1012 cm-2 eV-1, which matches well 
the steady dynamic characteristics of the device. These results elucidate 
that the technique of Ar-based NBE gate recessing presents a viable and 
promising method for fabricating high-performance normally-off GaN 
MOSHEMTs, which are highly demanded power conversion applications 
as well as in all-GaN monolithic integration.

Table 1 
Comparison of Dit values measured for devices with different recessed-gate 
etching processes

Ref Etching process Dielectric Dit(cm− 2eV− 1)

This work Ar-NBE 15 nm Al2O3 1.19 × 1012

(Yu et al., 2024) NBE 30 nm HfO2 1.23 × 1013

(Huang et al., 
2023)

Self-terminating Wet 
Etching

5 nm AlN+

30 nm SiNx

1.91 × 1012∗

(Hu et al., 2019) ALE 15 nm HfSiO 5.9 × 1012

(He et al., 2021) SAG 30 nm Al2O3 7.51 × 1012∗

*Estimated value.

Fig. 9. Interface trap state density of recessed-gate GaN MOSCAPs measured by 
DLTS with (a) different pulse voltage (UP) and (a) different pulse width (tP). UR 
is the reverse bias and TW is the measurement time.
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